Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Physiol Sci ; 74(1): 8, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38331728

The athlete's paradox phenomenon involves the accumulation of intramuscular triglycerides (IMTG) in both insulin-resistant and insulin-sensitive endurance athletes. Nevertheless, a complete understanding of this phenomenon is yet to be achieved. Recent research indicates that lactate, a common byproduct of physical activity, may increase the accumulation of IMTG in skeletal muscle. This is achieved through the activation of G protein-coupled receptor 81 (GPR81) leads to the suppression of the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway. The mechanism accountable for the increase in mitochondrial content in skeletal muscle triggered by lactate remains incomprehensible. Based on current research, our objective is to explore the role of the GPR81-inhibited cAMP-PKA pathway in the aggregation of IMTG and the increase in mitochondrial content as a result of prolonged exercise. The GPR81-cAMP-PKA-signaling pathway regulates the buildup of IMTG caused by extended periods of endurance training (ET). This is likely due to a decrease in proteins related to fat breakdown and an increase in proteins responsible for fat production. It is possible that the GPR81-cAMP-PKA pathway does not contribute to the long-term increase in mitochondrial biogenesis and content, which is induced by chronic ET. Additional investigation is required to explore the possible hindrance of the mitochondrial biogenesis and content process during physical activity by the GPR81-cAMP-PKA signal.


Endurance Training , Humans , Rats , Animals , Triglycerides , Physical Endurance/physiology , Muscle, Skeletal/metabolism , Insulin/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Receptors, G-Protein-Coupled/metabolism , Lactates/metabolism
2.
Physiol Int ; 111(1): 124-141, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38294536

Lactate, a metabolite of exercise, plays a crucial role in the body. In these studies, we aimed to investigate the role of G protein-coupled receptor 81 (GPR81), a specific receptor for lactate, in regulating lipid storage in the gastrocnemius muscle of rats. To achieve this, we measured the impact of sodium 3-hydroxybutyrate (3-OBA) concentration and time on the cAMP-PKA signaling pathway in the gastrocnemius muscles of rats. Our investigation involved determining the effects of administering 3-OBA at a concentration of 3 mmol L-1 just 15 min before exercise. As expected, exercise led to a notable increase in intramuscular lactate concentration in rats. However, injecting 3-OBA prior to exercise yielded intriguing results. It not only further augmented the cAMP-PKA signaling pathway but also boosted the expression of lipolysis-related proteins such as hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL). Simultaneously, it decreased the expression of fat-synthesizing proteins, including acetyl CoA carboxylase (ACC) and fatty acid synthase (FAS), while increasing the protein expression of cytochrome c oxidase subunit Ⅳ(COX Ⅳ) and the activity of citrate synthetase (CS). Unfortunately, there was no significant change observed in intramuscular triglyceride (IMTG) content. In summary, our findings shed light on the role of lactate in partially regulating intramuscular triglycerides during exercise.


Lipolysis , Physical Conditioning, Animal , Rats , Animals , Physical Conditioning, Animal/physiology , Receptors, G-Protein-Coupled/metabolism , Lactic Acid , Muscle, Skeletal/physiology , Triglycerides/metabolism
3.
Mol Biol Rep ; 50(3): 2591-2601, 2023 Mar.
Article En | MEDLINE | ID: mdl-36626064

BACKGROUND: High-intensity Interval Training (HIIT) is a time-efficient form of exercise and has gained popularity in recent years. However, at molecular level, the understanding about the effects of HIIT is not comprehensive, and even less is elucidated about HIIT of different training duration cycles, although different durations always lead to different post-training consequences. METHOD: In this study, by training SD rats using HIIT protocols lasting for different training duration cycles, we investigated the adaptive response of intramuscular triglyceride abundance as well as mitochondrial and lipid metabolic changes after HIIT training (2, 4, 6, 8, and 10 weeks). We selected 72 h after the last session of training as the time point of sacrifice. RESULTS: The suppressed activation of the cAMP-PKA pathway indicates that skeletal muscle was in the recovery phase at this time point. Intramuscular triglyceride abundance was significantly elevated after 2, 4, and 10 weeks of HIIT. However, the lipid metabolism-related proteins inconsistently changed in a chaotic trend (see Table 1). The expression levels of PGC1-α and COX IV decreased after 2 and 4 weeks of training and raised after 6 and 8 weeks of training. The expression level of citrate synthase (CS) decreased after 2, 4, 8, and 10 weeks of training, and showed an upward trend after 6 weeks of training. While the activity of CS decreased after 2 and 8 weeks of training and showed an upward trend after 6 weeks of HIIT. CONCLUSION: Given the abovementioned changing trends, we propose two speculations: (A) the damaged mitochondria oxidation capacity might be one of the causes of IMTG accumulation observed after 2 and 4 weeks of HIIT. This phase might be similar to the condition of type 2 diabetes. (B) after 6-week HIIT, mitochondria function and biogenesis might be improved and the IMTG contents declined to baseline. This might be explained as: mitochondrial enhancement increased the capacity of lipid oxidation and then offset the increase in IMTG achieved during the first 4 weeks. For HIIT Rat Modelling, if the aim is to observe HIIT-induced positive effects, caution should be exercised when considering 2 and 4 weeks of training under our HIIT frame. Also, implementing six-week training is at least effective for mitochondrial enhancement when using similar HIIT frame of this study.


Diabetes Mellitus, Type 2 , High-Intensity Interval Training , Rats , Animals , High-Intensity Interval Training/methods , Diabetes Mellitus, Type 2/metabolism , Rats, Sprague-Dawley , Muscle, Skeletal/metabolism , Lipid Metabolism , Mitochondria/metabolism , Triglycerides/metabolism , Lipids
...